Evaluation of performance metrics for bias field correction in MR brain images.

نویسندگان

  • Zin Yan Chua
  • Weili Zheng
  • Michael W L Chee
  • Vitali Zagorodnov
چکیده

PURPOSE To investigate inconsistencies between common performance measures for bias field correction reported in several recent studies and propose a solution. MATERIALS AND METHODS A set of synthetic images of a normal brain from the Montréal Simulated Brain Database (SBD) was processed using two bias field correction algorithms. The parameters of these algorithms were varied and the resulting outputs were assessed using several performance measures. Validity was estimated using Spearman rank correlation coefficient between "indirect" performance measures and the L2 norm of the difference between true and estimated bias fields. The "indirect" performance measures tested were: coefficients of variation of white matter (WM) and gray matter (GM), coefficient of joint variation. These measures were tested on bias field-corrected images that were permuted in terms of quality of WM/GM segmentation as well as the presence or absence of light smoothing. RESULTS Existing indirect performance measures yielded poor validity scores, explaining the inconsistencies reported in the literature. Image noise and inappropriate inclusion of partial volume voxels and neighboring tissues were found to be contributory. Combining conservative segmentation and smoothing significantly improved validity. CONCLUSION The use of indirect performance measures in the conventional manner to guide bias field correction is unreliable. Using these metrics on lightly smoothed images with conservatively segmented tissues proved more reliable for guiding the selecting of parameters for nonuniformity correction ultimately contributing to more accurate brain segmentation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantitative Comparison of SPM, FSL, and Brainsuite for Brain MR Image Segmentation

Background: Accurate brain tissue segmentation from magnetic resonance (MR) images is an important step in analysis of cerebral images. There are software packages which are used for brain segmentation. These packages usually contain a set of skull stripping, intensity non-uniformity (bias) correction and segmentation routines. Thus, assessment of the quality of the segmented gray matter (GM), ...

متن کامل

Comparison of state-of-the-art atlas-based bone segmentation approaches from brain MR images for MR-only radiation planning and PET/MR attenuation correction

Introduction: Magnetic Resonance (MR) imaging has emerged as a valuable tool in radiation treatment (RT) planning as well as Positron Emission Tomography (PET) imaging owing to its superior soft-tissue contrast. Due to the fact that there is no direct transformation from voxel intensity in MR images into electron density, itchr('39')s crucial to generate a pseudo-CT (Computed Tomography) image ...

متن کامل

Evaluating Reliability of Performance Metrics for Bias Field Correction in MR Brain Images

Introduction. Performance of nonuniformity correction approaches is usually evaluated indirectly, on the basis of remaining tissue intensity variability rather than the actual estimated bias field. Common indirect measures include coefficient of variation of white matter CV(WM) and gray matter CV(GM), and coefficient of joint variation CJV between WM and GM [1]. However, disagreements between i...

متن کامل

Method for bias field correction of brain T1-weighted magnetic resonance images minimizing segmentation error.

This work presents a new algorithm (nonuniform intensity correction; NIC) for correction of intensity inhomogeneities in T1-weighted magnetic resonance (MR) images. The bias field and a bias-free image are obtained through an iterative process that uses brain tissue segmentation. The algorithm was validated by means of realistic phantom images and a set of 24 real images. The first evaluation p...

متن کامل

روشی نوین در کاهش نوفه رایسین از مقدار بزرگی سیگنال دیفیوژن در تصویربرداری تشدید مغناطیسی (MRI)

The true MR signal intensity extracted from noisy MR magnitude images is biased with the Rician noise caused by noise rectification in the magnitude calculation for low intensity pixels. This noise is more problematic when a quantitative analysis is performed based on the magnitude images with low SNR(<3.0). In such cases, the received signal for both the real and imaginary components will fluc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of magnetic resonance imaging : JMRI

دوره 29 6  شماره 

صفحات  -

تاریخ انتشار 2009